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Abstract. The evolution of a two level system with a slowly varying Hamiltonian, modeled as a spin 1/2
in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of
harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the
dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.

PACS. 03.65.Vf Phases: geometric; dynamic or topological – 03.65.Yz Decoherence; open systems;
quantum statistical methods – 03.67.Pp Quantum error correction and other methods for protection
against decoherence

1 Introduction

In his seminal work [1] Berry showed the appearance of a
purely geometrical phase factor associated to the non de-
generate eigenstates of a Hamiltonian undergoing a cyclic
adiabatic evolution. Since then much work has been done
to generalize such concept to non cyclic, non degenerate or
non adiabatic evolution [2]. The renewed interest for ge-
ometric phases in a quantum computation scenario [3–7]
is due to their supposed intrinsic fault tolerance. Such hy-
pothesis has been analyzed in [8] for the case of a spin in a
slowly varying magnetic field with small classical random
fluctuations. There it was shown that for small fluctu-
ations, i.e. to first order in the perturbation, and in the
adiabatic limit the main source of decoherence are dynam-
ical fluctuations. Similar conclusions have been reached
for quantum noise in [9] by means of a quantum trajec-
tories approach. In the present paper we will analyze the
problem using a quantum Langevin equation approach.
Our system consists of a pseudospin interacting with a
quantized bosonic field. The spin free Hamiltonian is as-
sumed to undergo a slow cyclic evolution. The geometric
phase appears in a natural way in terms of the so called
adiabatic Hamiltonian [10]. Once such Hamiltonian is in-
troduced the Heisenberg equations of motion are derived
and from them the quantum Langevin equations. This ap-
proach allowed us to analyze the effects of the quantum
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fluctuations on both the decay constants and on the over-
all phase acquired by the spin energy eigenstates in their
cyclic evolution. The same problem has been addressed
by some recent papers [12] with the use of an elaborated
perturbative technique. We will show how our approach
allows to obtain in a simpler and more straightforward way
the corrections to the the Berry phase found in [12]. Fur-
thermore we will provide a transparent physical picture
of the results obtained. The effect of noise on geometric
phases in different scenarios from the one described above
has been studied in [13].

2 The adiabatic Hamiltonian

The system we consider consists of a pseudospin in a
slowly varying static magnetic field interacting with an
environment modeled as a bath of harmonic oscillators.
The overall system Hamiltonian is assumed to be of the
standard form

Ĥ =
1
2
B · σ +

∑

k

ωkâ
†
kâk +

∑

k

gkσz

(
âk + â†k

)
(1)

where σ ≡ (σx, σy , σz) are Pauli operators and B(t) ≡
B0(sinϑ cosϕ, sinϑ sinϕ, cosϑ) is a three dimensional vec-
tor, which we assume to be time dependent and â†k(âk) are
bosonic creation (annihilation) operators for mode k (we
have set � = 1).
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The first step to obtain the Heisenberg equations of
motion for the spin and bath operators is the introduc-
tion of the so called adiabatic Hamiltonian [10] i.e. of the
Hamiltonian whose eigenstates, in the absence of interac-
tion with the environment, after a cyclic evolution acquire
the dynamical and geometrical phase predicted by Berry.
Let us first rewrite the free spin Hamiltonian in the form

ĤS ≡ 1
2
B·σ =

B0

2
(| ↑n (t)〉〈↑n (t)| − | ↓n (t)〉〈↓n (t)|) (2)

where | ↑n (t)〉 and | ↓n (t)〉 are the eigenstates of ĤS

at time t i.e. the eigenstates of the operator σ · n, where
n ≡ (sinϑ cosϕ, sinϑ sinϕ, cosϑ) is a unit vector pointing
in the instantaneous B direction. Let us then define the
following time dependent unitary operator:

U(t) = | ↑n (0)〉〈↑n (t)| + | ↓n (0)〉〈↓n (t)|. (3)

In the absence of any coupling with the environment the
time evolution of the state vector |ψ̃(t)〉 = Û(t)|ψ(t)〉 is
generated by the Hamiltonian

ˆ̃HS = Û(t)ĤSÛ
†(t) − iÛ(t)

d

dt
Û †(t). (4)

A time dependent B will in general induce transitions be-
tween the instantaneous energy eigenstates | ↑n (t)〉 and
| ↓n (t)〉. However if the direction of B changes slowly
enough in time we can neglect such transitions, which
in (4) are described by the term i〈↑ (t)| d

dt | ↓ (t)〉. This
is nothing but the standard adiabatic approximation [11],
valid as long as i〈↑ (t)| d

dt | ↓ (t)〉 � B. On the other hand
i〈↑ (t)| d

dt | ↑ (t)〉 and i〈↓ (t)| d
dt | ↓ (t)〉, which are nothing

but the so called Berry connection, are responsible of the
appearance of a non vanishing geometric phase and there-
fore must not be neglected. The adiabatic Hamiltonian is
therefore

Ĥad
S =

(
B0

2
− i

〈
↑n (t)

∣∣∣∣
d

dt

∣∣∣∣ ↑n (t)
〉)

|↑n (0)〉 〈↑n (0)|

−
(
B0

2
+ i

〈
↓n (t)

∣∣∣∣
d

dt

∣∣∣∣ ↓n (t)
〉)

|↓n (0)〉 〈↓n (0)| . (5)

Note that when B undergoes a cyclic evolution the eigen-
states of (5) correctly acquire the dynamical plus the ge-
ometrical phase predicted by Berry.

In the basis of the eigenstates of the σz operator we
have

| ↑n〉 = e−iϕ/2 cos
ϑ

2
| ↑z〉 + eiϕ/2 sin

ϑ

2
| ↓z〉

| ↓n〉 = e−iϕ/2 sin
ϑ

2
| ↑z〉 − eiϕ/2 cos

ϑ

2
| ↓z〉 (6)

from which it follows that

i

〈
↑n (t)

∣∣∣∣
∂

∂t

∣∣∣∣ ↑n (t)
〉

= −i
〈
↓n (t)

∣∣∣∣
∂

∂t

∣∣∣∣ ↓n (t)
〉

= ϕ̇
1
2

cosϑ.

(7)

The adiabatic Hamiltonian takes therefore the form

Ĥad
S =

B0 − ϕ̇ cosϑ(t)
2

n(0) · σ. (8)

For the sake of simplicity, and with no loss of generality, we
will consider the case most discussed in literature in which
B(t) precesses slowly with angular velocity Ω = 2π/T i.e.
ϕ(t) = Ωt, ϕ(0) = 0, ϑ(t) = ϑ(0). Furthermore we will
rotate our axis so that [cosϑ(0)σz + sinϑ(0)σx] → σz . In
this case the adiabatic Hamiltonian takes the following
simple form

Ĥad
S =

ω0

2
σz (9)

where ω0 = B0 −Ω cosϑ(0). In order to simplify the com-
parison between our results and the existing literature
we would like to point out that our approach is different
from, although at the end equivalent to, the one in which
a rotating frame is introduced (see.e.g. [12]). In geomet-
ric terms this implies that a field of amplitude Ω along
the ẑ-direction is added to B, i.e. in the rotating frame
the effective magnetic field changes both in direction and
length. This is not the case in our adiabatic Hamiltonian,
in which the magnetic field changes only in length. How-
ever when the overall accumulated phase is calculated to
lowest order in Ω their model coincides with ours. In other
words while we assume from the very beginnings the adi-
abatic limit in [12] the non adiabatic contributions are
discarded a posteriori.

To conclude this section we write our full, time inde-
pendent, adiabatic spin-boson Hamiltonian

Ĥad =
ω0

2
σz +

∑

k

ω(k)â†kâk

+
∑

k

gk

(
âk + â†k

)
(σz cosϑ− σx sinϑ) . (10)

Note that in (10) and from now on the spin operators are
in the adiabatic frame.

3 The Langevin equations

The quantum Langevin equation of motion for a two level
systems coupled with a harmonic bath is well known in lit-
erature [15,16]. Here, for the sake of clarity, we will sketch
the main steps of its derivation. The starting point are
the Heisenberg equations of motion (Ȯ = i[Ĥ, O]) for the
spin Pauli operators σz , σ+ = (σx + iσy)/2 and the bath
operators âk, â

†
k which are

σ̇z = 2i sinϑ
∑

k

gk(σ+ − σ−)(âk + â†k) (11)

σ̇+ = iω0σ+

+ i
∑

k

gk(âk + â†k)(sin ϑσz + 2 cosϑσ+) (12)

˙̂ak = −iωkâk − igk(cosϑσz − sinϑ(σ+ + σ−)) (13)
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which can be cast in the following integral form

σz(t) = σz(0) + 2i sinϑ
∑

k

gk

∫ t

0

dt′ [σ+(t′) − σ−(t′)]

×
[
âk(t′) + â†k(t′)

]
(14)

σ+(t) = σ+(0)eiω0t + i
∑

k

gk

∫ t

0

dt′eiω0(t−t
′
)

×
[
âk(t′) + â†k(t′)

]
[sinϑσz(t′) + 2 cosϑσ+(t′)]

(15)

âk(t) = âk(0)e−iωkt − igk

∫ t

0

dt′e−iωk(t−t
′
)

× {cosϑσz(t′) sinϑ [σ+(t′) + σ−(t′)]} . (16)

A standard assumption in the derivation of a quantum
Langevin equation is that the timescale of the decay pro-
cesses is much slower than the free evolution. In other
words the weak coupling with the bath degrees of free-
dom modifies the spin dynamics on timescales which are
much longer that ω−1

0 . In the above integrals we can there-
fore put

σz(t
′
) = σz(t) (17)

σ+(t
′
) = e−iω0(t−t

′
)σ+(t) (18)

âk(t
′
) = eiωk(t−t

′
)âk(t). (19)

Equations (14, 15, 16) then become

σz = σz(0)

+2i sinϑ
∑

k

gk

[
σ+âkζ

�(ω0 − ωk)

+σ+â
†
kζ

�(ω0 + ωk) − σ−âkζ(ω0 + ωk)

−σ−â†kζ(ω0 − ωk)
]

(20)

σ+ = eiω0tσ+(0)

+i sinϑ
∑

k

gkσz

[
âkζ(ω0 + ωk) + â†kζ(ω0 − ωk)

]

+2i cosϑ
∑

k

gkσ+

[
âkζ(ωk) + â†kζ

�(ωk)
]

(21)

âk = e−iωktâk(0) − igk [cosϑσzζ
∗(ωk)

− sinϑ (σ+ζ
�(ω0 + ωk) + σ−ζ(ω0 − ωk))] (22)

where

ζ(x) = lim
t→∞

∫ t

0

eixt
′
dt

′
= P

i

x
+ πδ(x). (23)

P denotes principal part and δ(x) is the Dirac delta func-
tion. The integration limit t → ∞ is justified on the
ground that we are interested at times t	 ω−1

0 .
Inserting the (20–22) into the (11, 12) and taking care

of a consistent choice of all operator products [15,16], one

obtains the desired equations of motion for the spin oper-
ator in the rotating frame, averaged over the environment
degrees of freedom

dσz

dt
= −2 sin2 ϑ(γ⊥σz + γ⊥vac1l)

− 2 sin 2ϑγ‖ (σ+ + σ−) (24)

dσ+

dt
= iω0σ+ +

sin 2ϑ
2

[2(iξ − γ⊥vac)1l − (iλ+ γ⊥)σz ]

+ sin2 ϑ{(iλ− γ⊥)σ+ − (+iλ+ γ⊥)σ−}
− 4 cos2 ϑγ‖σ+ (25)

where, transforming the sums into integrals

γ⊥ = π

∫ ωc

0

dωkρ(ωk)g2
k (2nk + 1) δ(ω0 − ωk) (26)

γ‖ = π

∫ ωc

0

dωkρ(ωk)g2
k (2nk + 1) δ(ωk) (27)

λ =
∫ ωc

0

dωkρ(ωk)g2
k(2nk + 1)

(
P

ω0 − ωk
+

P

ω0 + ωk

)

(28)

ξ =
∫ ωc

0

dωkρ(ωk)g2
k

[(
2P
ωk

− P

ω0 − ωk
+

P

ω0 + ωk

)]
.

(29)

In the above equations ρ(ωk) is the density of modes at
frequency ωk, nk is the mean number of photon in field
mode k, 1l is the identity in C

2 and γ⊥vac is γ⊥ for nk = 0.

4 Dissipation and energy shifts

The above equations allow us to clearly identify the ef-
fects of the adiabatic evolution on the physical quantities
which characterize the spin dynamics, namely the decay
constants and the energy shift. First of all let us consider
the decay constant γ‖ which describes the decoherence
mechanism due to fluctuations “parallel” to the instanta-
neous direction of B. As expected it is not modified by
the adiabatic change of such direction. Furthermore the
value of γ‖ depends on the density of field modes at zero
frequency which, in most situations of physical interest is
equal to zero.

The decay constant γ⊥ describes the dissipation mech-
anism due to the exchange of energy between system and
bath and depends on the density of modes at the res-
onance frequency ω = ω0. If we assume that the den-
sity of modes is a slowly varying function of ω near res-
onance, we can safely assume for very small Ω, i.e. in
the adiabatic limit,

∫ ωc

0
dωkρ(ωk)g2

k (2nk + 1) δ(ω−ω0) ≈∫ ωc

0 dωkρ(ωk)g2
k (2nk + 1) δ(ω − B0). This confirms that

the timescale of dipole decay is not modified by the adi-
abatic evolution, a result which has been obtained with
different techniques, from classical stochastic noise [8], to
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quantum jump [9]. We should point out that in order to
observe the geometric phase we must have

γ⊥ � Ω � ω0. (30)

Let us consider now the change in the energy shift λ. In
the adiabatic limit we must consider terms up to order
O(Ω) and therefore

λ =
∫ ωc

0

dωkρ(ωk)g2
k(2nk + 1)

[(
P

B0 − ω
+

P

B0 + ω

)

− Ω cosϑ
∂

∂ω0

∣∣∣∣
ω0=B0

(
P

ω0 − ω
+

P

ω0 + ω

)]
(31)

≈ λ0 + δλ. (32)

The quantity sin2 ϑλ0 is nothing but the Lamb
Shift [15,16], while

δλ = Ω cosϑ
∫ ωc

0

dωkρ(ωk)g2
k(2nk + 1)

×
[

1
(B0 − ω)2

+
1

(B0 + ω)2

]
(33)

gives information on the the effect of the quantum fluctu-
ations on the geometric phase. This correction coincides
with the results obtained by [12] with an elaborated per-
turbation technique. The observable overall phase differ-
ence between the two energy eigenstates at the end of their
cyclic evolution, i.e. at time T = 2πΩ−1, will be

Φ(T ) = ΦD + ΦG (34)

where the dynamical phase ΦD

ΦD =
[
B0 + sin2 ϑ

∫ ωc

0

dωkρ(ωk)g2
k(2nk + 1)

×
(

P

B0 − ω
+

P

B0 + ω

)]
T (35)

is simply due to the renormalized energy splitting, while
the geometric phase ΦG is

ΦG = 2π cosϑ
{

1 − sin2 ϑ

∫ ωc

0

dωkρ(ωk)g2
k(2nk + 1)

×
[

1
(B0 − ω)2

+
1

(B0 + ω)2

]}
. (36)

The expression (36) is amenable to a straightforward intu-
itive geometric interpretation. It is a well known fact that
for a spin 1/2 the Berry phase is is equal to the solid angle
spanned by the time varying magnetic field B on a unit
sphere centered around degeneracy. As opposite energy
eigenstates acquire opposite geometric phases the overall
phase difference between them will be, for a slowly pre-
cessing field at an angle ϑ, equal to ΦBerry = 2π cosϑ.
In the presence of a weak coupling with the bosonic bath

however each energy eigenstate will undergo virtual tran-
sitions, responsible for the Lamb Shift, with a probability

Probvt = sin2 ϑ

∫ ωc

0

dωkρ(ωk)g2
k(2nk + 1)

×
[

1
(B0 − ω)2

+
1

(B0 + ω)2

]
. (37)

During such transition the spin state parallel (antiparal-
lel) to the direction of the field B ‘jumps’ to the antipar-
allel (parallel) spin state, acquiring an opposite geomet-
ric phase. The overall geometric phase difference between
the energy eigenstates will be therefore decreased by an
amount proportional to Probvt, as shown in (36). Notice
that the correction to the Berry phase is of order O(g2).
In [8], where the effects of classical noise were considered,
no analogous correction was obtained because only con-
tributions to first order in the fluctuating field were taken
into account.

5 Conclusions

In this paper we have shown how the corrections to the
Berry phase and the decay constants for a spin 1/2 un-
dergoing an adiabatic cyclic evolution can be obtained in
terms of quantum Langevin equation once the adiabatic
Hamiltonian is introduced. We have confirmed that the
main source of decoherence is due only to the dynami-
cal fluctuations, a result which has been obtained with
different techniques, from classical stochastic noise [8], to
quantum jump [9] and which emerges in a straightforward
way in our approach. The Heisenberg equations of motion
give also the correction to the geometric part of the overall
phase difference between the energy eigenstates at the end
of the cyclic evolution due to the coupling with the bath.
We have also shown how such corrections are amenable to
a straightforward geometrical interpretation.
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